Tay-Sachs disease is a rare, inherited neurodegenerative disease. People with Tay-Sachs disease do not have enough of an enzyme called beta-hexosaminidase A. The less enzyme a person has, the more severe the disease and the earlier that symptoms appear. Infantile - the most common severe form, with symptoms appearing in the first few months of life. Symptoms include a loss of skills learned (regression), seizures, and loss of muscle and mental functions. Symptoms include behavior problems, gradual loss of skills, frequent respiratory infections, and seizures. Symptoms may include clumsiness, muscle weakness, psychiatric disorders, and gradual loss of skills, often leading to the need for mobility assistance. Intellect and behavior become impaired in some cases. The lifespan varies from shortened to unaffected. Tay-Sachs disease is caused by genetic changes in the HEXA gene and inheritance is autosomal recessive. The HEXA gene gives the body instructions to make part of the beta-hexosaminidase A enzyme, which is needed to break down a substance called GM2 ganglioside. When the enzyme is not functional or not made, GM2 ganglioside builds up in the nerve cells (neurons) of the brain and spinal cord, causing the symptoms of the disease. The diagnosis of Tay-Sachs disease involves a blood test that detects absent or very low levels of beta-hexosaminidase A enzyme activity. Molecular genetic testing of the HEXA gene may be used to identify the specific genetic changes present, or to rule out the disease if a false-positive blood test result is suspected.
Summary
Tay-Sachs disease is a rare, inherited neurodegenerative disease. People with Tay-Sachs disease do not have enough of an enzyme called beta-hexosaminidase A. The less enzyme a person has, the more severe the disease and the earlier that symptoms appear. Infantile - the most common severe form, with symptoms appearing in the first few months of life. Symptoms include a loss of skills learned (regression), seizures, and loss of muscle and mental functions. Symptoms include behavior problems, gradual loss of skills, frequent respiratory infections, and seizures. Symptoms may include clumsiness, muscle weakness, psychiatric disorders, and gradual loss of skills, often leading to the need for mobility assistance. Intellect and behavior become impaired in some cases. The lifespan varies from shortened to unaffected. Tay-Sachs disease is caused by genetic changes in the HEXA gene and inheritance is autosomal recessive. The HEXA gene gives the body instructions to make part of the beta-hexosaminidase A enzyme, which is needed to break down a substance called GM2 ganglioside. When the enzyme is not functional or not made, GM2 ganglioside builds up in the nerve cells (neurons) of the brain and spinal cord, causing the symptoms of the disease. The diagnosis of Tay-Sachs disease involves a blood test that detects absent or very low levels of beta-hexosaminidase A enzyme activity. Molecular genetic testing of the HEXA gene may be used to identify the specific genetic changes present, or to rule out the disease if a false-positive blood test result is suspected.Tay-Sachs disease is a rare, inherited neurodegenerative disease. People with Tay-Sachs disease do not have enough of an enzyme called beta-hexosaminidase A. The less enzyme a person has, the more severe the disease and the earlier that symptoms appear. Infantile - the most common severe form, with symptoms appearing in the first few months of life. Symptoms include a loss of skills learned (regression), seizures, and loss of muscle and mental functions. Symptoms include behavior problems, gradual loss of skills, frequent respiratory infections, and seizures. Symptoms may include clumsiness, muscle weakness, psychiatric disorders, and gradual loss of skills, often leading to the need for mobility assistance. Intellect and behavior become impaired in some cases. The lifespan varies from shortened to unaffected. Tay-Sachs disease is caused by genetic changes in the HEXA gene and inheritance is autosomal recessive. The HEXA gene gives the body instructions to make part of the beta-hexosaminidase A enzyme, which is needed to break down a substance called GM2 ganglioside. When the enzyme is not functional or not made, GM2 ganglioside builds up in the nerve cells (neurons) of the brain and spinal cord, causing the symptoms of the disease. The diagnosis of Tay-Sachs disease involves a blood test that detects absent or very low levels of beta-hexosaminidase A enzyme activity. Molecular genetic testing of the HEXA gene may be used to identify the specific genetic changes present, or to rule out the disease if a false-positive blood test result is suspected.
Read More
Read Less
Resource(s) for Medical Professionals and Scientists on This Disease:
Orphanetprovides GARD with information for this disease.
GeneReviewsprovides clinical information on genetic diseases, including diagnosis, treatment, and genetic counseling.
About Tay-Sachs disease
Many rare diseases have limited information. Currently, GARD aims to provide the following information for this disease:
Population Estimate:Fewer than 5,000 people in the U.S. have thisdisease.
Symptoms:May start to appear at any time in life.
Cause:This disease has more than one possible cause.
Organizations:Patient organizations are available to help find a specialist, or advocacy and support for this specific disease.
Symptoms of this disease may start to appear at any time in life.
The age symptoms may begin to appear differs between diseases. Symptoms may begin in a single age range, or during several age ranges. The symptoms of some diseases may begin at any age. Knowing when symptoms may have appeared can help medical providers find the correct diagnosis.
Prenatal Selected
Before Birth
Newborn Selected
Birth-4 weeks
Infant Selected
1-23 months
Child Selected
2-11 years
Adolescent Selected
12-18 years
Adult Selected
19-65 years
Older Adult Selected
65+ years
Symptoms may start to appear at any time in life.
Symptoms
The types of symptoms experienced, and their intensity, may vary among people with this disease. Your experience may be different from others. Consult your health care team for more information.
The following describes the symptom(s) associated with this disease along with the corresponding body system(s), description, synonyms, and frequency (Note: Not all possible symptoms may be listed):
Musculoskeletal System Musculoskeletal System
63 Symptoms
63 Symptoms
63 Symptoms
Musculoskeletal System
The musculoskeletal system is made up of the bones, muscles, and joints. Common symptoms of problems in the musculoskeletal system include pain, weakness, stiffness, noises in the joints, inflammation, and decreased range of motion. Diseases affecting the musculoskeletal system may be diagnosed and treated by an orthopedist, rheumatologist, or neuromuscular specialist.
Tay-Sachs disease is caused by genetic mutations, also known as pathogenic variants. Genetic mutations can be hereditary, when parents pass them down to their children, or they may occur randomly when cells are dividing. Genetic mutations may also result from contracted viruses, environmental factors, such as UV radiation from sunlight exposure, or a combination of any of these. Learn more about genetic diseases from the National Library of Medicine (NLM).
If you suspect you may have this disease, you may want to start collecting your family health history. Information such as other family members who have had similar symptoms, when their/your symptoms first appeared, or exposures to any potential disease-causing environmental factors should be discussed with your medical team. This tool from the Surgeon General can help you collect your family health history.
Can This Disease Be Passed Down From Parent to Child?
Yes. It is possible for a biological parent to pass down genetic mutations that cause or increase the chances of getting this disease to their child. This is known as inheritance. Knowing whether other family members have previously had this disease, also known as family health history, can be very important information for your medical team. This tool from the Surgeon General can help you collect your family health history.
There are multiple ways, or patterns, a disease can be inherited depending on the gene(s) involved. Based on GARD's current data, this disease can be inherited in the following pattern(s):
Autosomal Recessive
Autosomal means the gene involved is located on one of the numbered chromosomes. Recessive means that a child must inherit two copies of the mutated gene, one from each biological parent, to be affected by the disease. A carrier is a person who only has one copy of the genetic mutation. A carrier usually doesn't show any symptoms of the disease.
If both biological parents are carriers, there is a 25% their child inherits both copies of the mutated gene and is affected by the disease. Additionally, there is a 50% chance their child inherits only one copy of the mutated gene and is a carrier.
Patient organizations can help patients and families connect. They build public awareness of the disease and are a driving force behind research to improve patients' lives. They may offer online and in-person resources to help people live well with their disease. Many collaborate with medical experts and researchers.
Services of patient organizations differ, but may include:
Ways to connect to others and share personal stories
Easy-to-read information
Up-to-date treatment and research information
Patient registries
Lists of specialists or specialty centers
Financial aid and travel resources
Please note: GARD provides organizations for informational purposes only and not as an endorsement of their services. Please contact an organization directly if you have questions about the information or resources it provides.
Clinical studies are part of clinical research and play an important role in medical advances, including for rare diseases. Through clinical studies, researchers may ultimately uncover better ways to treat, prevent, diagnose, and understand human diseases.
What Are Clinical Studies?
Clinical studies are medical research involving people as participants. There are two main types of clinical studies:
Clinical trials determine if a new test or treatment for a disease is effective and safe by comparing groups receiving different tests/treatments.
Observational studies involve recording changes over time among a specific group of people in their natural settings.
People participate in clinical trials for many reasons. People with a disease may participate to receive the newest possible treatment and additional care from clinical study staff as well as to help others living with the same or similar disease. Healthy volunteers may participate to help others and to contribute to moving science forward.
To find the right clinical study we recommend you consult your doctors, other trusted medical professionals, and patient organizations. Additionally, you can use ClinicalTrials.gov to search for clinical studies by disease, terms, or location.
What if There Are No Available Clinical Studies?
ResearchMatch helps connect people interested in research studies with researchers from top medical centers across the United States. Anyone from the U.S. can register with this free program funded by NIH. Researchers from participating institutions use the database to search for and invite patients or healthy volunteers who meet their study criteria to participate.
Join the All of Us Research Program!
The All of Us Research Program is inviting 1 million people from all backgrounds across the U.S. to help build one of the most diverse health databases in history. Researchers will use the data to learn how our biology, lifestyle, and environment affect health. This may one day help them find ways to treat and prevent diseases.
What Are Clinical Studies?
Clinical studies are medical research involving people as participants. There are two main types of clinical studies:
Clinical trials determine if a new test or treatment for a disease is effective and safe by comparing groups receiving different tests/treatments.
Observational studies involve recording changes over time among a specific group of people in their natural settings.
People participate in clinical trials for many reasons. People with a disease may participate to receive the newest possible treatment and additional care from clinical study staff as well as to help others living with the same or similar disease. Healthy volunteers may participate to help others and to contribute to moving science forward.
To find the right clinical study we recommend you consult your doctors, other trusted medical professionals, and patient organizations. Additionally, you can use ClinicalTrials.gov to search for clinical studies by disease, terms, or location.People participate in clinical trials for many reasons. People with a disease may participate to receive the newest possible treatment and additional care from clinical study staff as well as to help others living with the same or similar disease. Healthy volunteers may participate to help others and to contribute to moving science forward.
To find the right clinical study we recommend you consult your doctors, other trusted medical professionals, and patient organizations. Additionally, you can use ClinicalTrials.gov to search for clinical studies by disease, terms, or location.
Read More
Read Less
What if There Are No Available Clinical Studies?
ResearchMatch helps connect people interested in research studies with researchers from top medical centers across the United States. Anyone from the U.S. can register with this free program funded by NIH. Researchers from participating institutions use the database to search for and invite patients or healthy volunteers who meet their study criteria to participate.
Join the All of Us Research Program!
The All of Us Research Program is inviting 1 million people from all backgrounds across the U.S. to help build one of the most diverse health databases in history. Researchers will use the data to learn how our biology, lifestyle, and environment affect health. This may one day help them find ways to treat and prevent diseases.
ClinicalTrials.gov, an affiliate of NIH, provides current information on clinical research studies in the United States and abroad. Talk to a trusted doctor before choosing to participate in any clinical study. We recommend checking this site often and searching for studies with related terms/synonyms to improve results.
Contact a GARD Information Specialist if you need help finding more information on this rare disease or available clinical studies. Please note that GARD cannot enroll individuals in clinical studies.
Use the contact form to send your questions to a GARD Information Specialist.
Please allow 2 to 10 business days for us to respond.
ClinicalTrials.gov, an affiliate of NIH, provides current information on clinical research studies in the United States and abroad. Talk to a trusted doctor before choosing to participate in any clinical study. We recommend checking this site often and searching for studies with related terms/synonyms to improve results.
Contact a GARD Information Specialist if you need help finding more information on this rare disease or available clinical studies. Please note that GARD cannot enroll individuals in clinical studies.
Take steps toward getting a diagnosis by working with your doctor, finding the right specialists, and coordinating medical care.
GARD collects data from a variety of sources to populate its website and provide accurate and reliable information on rare diseases.
GARD uses data collected from Orphanet and Online Mendelian Inheritance in Man (OMIM) to interpret and provide information on rare diseases. This includes names, synonyms, genes, symptom frequency, population estimates and more.
Orphanet is an online database of rare diseases and orphan drugs that provides aggregated data coordinated by INSERM-US14 in Paris.