Respiratory Drug Delivery Devices
A CDRH Perspective

Sugato De, M.S.
Biomedical Engineer
Food and Drug Administration
Center for Devices and Radiological Health
Disclosure

This speaker has had no financial arrangement or affiliation or other beneficial interest with any products or firms relevant to the discussions at this workshop.
Overview

• CDRH Medical Device Review Program
• Classification Paradigms
 – “General Purpose” vs. “Drug-Specific”
• Respiratory Drug-Device Co-development
• Regulatory Pathways for Drug-Specific Delivery Devices
• Device Review Considerations
promote and protect the health of the public.
- bring safe and effective medical devices to the market as quickly as possible...
- ...while ensuring that devices and radiological products currently on the market remain safe and effective.
Medical Device Classes

• Class I Devices:
 – General controls sufficient to demonstrate safety and effectiveness.
 – Most exempt from premarket submission.
 – Examples: Gloves, scalpels.

• Class II Devices:
 – General controls alone insufficient to demonstrate safety and effectiveness.
 – Special controls are applied.
 • Performance Standards
 • Post-Market Surveillance
 – Require 510(k) Premarket Notification (Substantial Equivalence)
 – Examples: Ventilators, diagnostic ultrasounds, nebulizers.

• Class III Devices: Novel technology, general and special controls insufficient.
 – Require Premarket Approval (PMA) Submission
 – Examples: Drug Eluting Stent
Combination Products

- Nebulizers/MDIs are combination products by nature.

- Combination Product Definition:
 - A product comprised of two or more regulated components that are physically, chemically, or otherwise combined or mixed and produced as a single entity.

- Office of Combination Products assigns jurisdiction based on primary mode of action.
Device Categories

- Nebulizers and inhalers are grouped into two categories.
 - General Purpose
 - Drug-Specific
General Purpose Device

- Device intended to aerosolize a range of well-characterized, prescribed drugs for delivery to a patient’s airway.
- Drug components must have prior approval from CDER.
- Examples of drug classes appropriate for general purpose devices:
 - Beta-agonist bronchodilators (albuterol)
 - Anti-cholinergic bronchodilators (ipratropium bromide)
 - Anti-inflammatory drugs (cromolyn sodium).

- Reviewed by CDRH via 510(k) Premarket Notification.
Drug-Specific Device

• Device specifically designed to deliver a single drug to a patient’s airway.
 – All inhaled antimicrobials are delivered by drug-specific devices.
 – Example: Altera Nebulizer System (Cayston)

• Assigned to CDER as the lead review center.
 – Investigational New Drug (IND) and New Drug Application (NDA).
 – CDRH is consulted for review of the device component.
Drug-Specific Device

• For the review of the device component, a manufacturer may:
 – (1) Submit a “device module” as component of the NDA or IND.
 • Include all information pertinent to device.
 • Device review occurs concurrently with NDA.
 – (2) Submit a separate 510(k) for device component.
 • Approval dependent on NDA approval of drug component.

• Device module within context of NDA is preferred.
 – Avoid two separate submissions, conflicting timelines.
Platform Nebulizers

• Base nebulizers that maybe “customized” to deliver multiple drugs.

• All configurations require performance characterization.

• May require both 510(k) and NDA.
Drug-Device Co-development

• Consideration of delivery device should occur early in co-development process.
• Standards for dose uniformity for drug-specific devices are generally higher than for general purpose devices.
• Human factors and usability studies should be conducted on device concurrent to Phase 2.
• Finalized release version of device should be used in Phase 3 clinical trials.
Device Review Considerations

- Indications for Use
- Device Technology
- Labeling
- Sterilization/Shelf Life
- Biocompatibility
- Electrical Safety
- Mechanical Safety
- Electromagnetic Compatibility

- Software Documentation
- Usability & Human Factors
- Performance Tests
 - Particle Characterization
 - Triggering Validation (Breath-Actuated)
Indications for Use

• State intended use of proposed device.

• FDA approves devices for specific patient populations.
 – Population for which there is sufficient data to demonstrate a reasonable assurance of safety and effectiveness.

• Environments for use should be included.
Device Technology

- Describe principle of operation.
- Illustrate and explain breathing gas path.
- Identify patient-interface accessories (e.g. mouthpiece) and device components.
 - Specify single use, single-patient reuse, or multiple-patient reuse for each component.
Performance Tests

- Performance of nebulizers is determined primarily by cumulative particle characterization tests.

- FDA recommends use of a cascade impactor with at least six stages.
 - Multi-stage sampling device.
 - Used to determine the size distribution of an aerosol.
Performance Tests

• Testing should be conducted and minimum, nominal and maximum flow rates allowable by device.
• Conduct testing in accordance with each drug’s labeled concentration, dose volume and nebulization time.
• Continue until device is empty as indicated by sputtering.

❖ Laser diffraction is currently not accepted by CDRH.
Performance Tests

• In vitro testing almost always provides drug mass *emitted* at patient interface.

• Measurement of *delivered* mass to the respiratory tract requires knowledge about its geometry, especially the oropharynx, disease state etc.
Particle Specifications

- **Total Emitted Mass (TEM)**
 - Mass/actuation emitted by device.
 - Not to be confused with clinical dose, where more than one actuation may be specified.

- **Coarse/Fine/Extra-fine Mass (CPM, FPM, EPM)**
 - Mass of sub-fractions representing defined ranges in terms of particle size.

- **Coarse/Fine/Extra-fine Mass Fractions (CPF, FPF, EPF)**
 - Mass of relevant sub-fraction divided by TEM.
Particle Specifications

- **Aerodynamic Particle Size Distribution (APSD)**
 - Particles 2-5 µm have the greatest potential for lung deposition.
 - Likely to be related to clinical response.
 - Extra-fine particles (<1.1 µm) may escape deposition and be exhaled.
 - Course particles (>4.7 µm) deposit in laryngeal and oropharyngeal region
 - No clinical benefit for airway drugs.
Particle Specifications

• **Respirable Mass (RM)**

 – Total mass of drug product likely to penetrate and deposit on receptors in the proximal and distal airways.

 – Generally defined as particles recovered between 0.4 - 4.7 µm.
Variability Considerations

- Dose uniformity from a specific device.
- Mass delivered per actuation.
- Inter-sample variability.

Choose adequate sample size to demonstrate...
- Variability in individual device samples do not noticeably affect the particle specifications.
- Develop appropriate level of confidence for particle specifications overall.
Tests For Add-Ons

• Spacers or holding chambers often impact the performance characteristics of the device.

• Compare base device with add-on to base device without add-on.
 – Respirable mass should be comparable.
 – Identify source of variability.
Facemask Tests

• Achieving a seal between facemask and face is critical for effective medication delivery.
 – Measure dead space between mask and face.
 – Inhalation valve movement indicator provides user reassurance of seal.
Test Report Components

- Original nebulizer dose volume.
- Quantity of drug recovered on each plate of the impactor, throat, and outlet filter in addition to the “dead volume.”
- Drug mass recovered in course, fine, extra-fine size ranges.
- Drug mass recovered in the respirable size range.
- Mass median aerodynamic diameter (MMAD) of the particles.
- Geometric standard deviation of the MMAD.
- Graphic depiction of quantity of particles of each size range.
Limitations of In Vitro Testing

• Results with every patient and disease condition cannot be defined.

• Tests can therefore only mimic a limited number of representative (i.e. commonly encountered) conditions.
Need For More Clinically Relevant Tests

- Breathing pattern influences particle motion in the airways, affecting deposition.
- Delay between device actuation and inhalation reduces delivered dose.
- If a facemask is needed, imperfect sealing between facemask and face can prevent effective medication delivery.
Variable Flow Rate Testing

• Problem: Breathing pattern influences particle motion in the airways, affecting deposition.

• Solution: Determine emitted dose of delivery device connected to a breathing simulator.

 – Use representative breathing patterns for patient populations.
 • Tidal Volume, Frequency, I/E Ratio, Minute Volume

 – Determine ED by filter collection at patient interface.
Variable Flow Rate Testing

• 2-Step Procedure
 – Time actuation to onset of inhalation.
 – Time actuation to onset of exhalation.
 • Indicates dose available to patient unable to coordinate actuation and inhalation properly.
 • Indicates how device may perform in clinical use.
Delayed Aerosol Particle Size Distribution (APSD) Measurements

• Problem: Delay between device actuation and inhalation reduces delivered dose.
 – By gravitational sedimentation.
 – Leakage or air ingress into holding chamber.

• Solution: Incorporate brief delay for APSD measurement using a no delay condition as a benchmark.
Simulations: Facemask Testing

- **Problem:** If a facemask is needed, imperfect sealing between facemask and face can prevent effective medication delivery.

- **Solution:**
 - Model realistic facial features including soft tissues where facemask makes contact.
 - Model upper respiratory tract.
Simulations: Facemask Testing

SAINT 9-mo. infant model
Janssens et al. JAM 2001;14:433-441

2-yr. child model
Smaldone et al. JAM 2005;18:354-363

infant face

small child face
Human Factors & Usability

• Step 1: Identify potential device- and user-related risks.
• Step 2: Propose mitigations, safety features and/or labeling warnings.
• Step 3: Test adequacy of proposed mitigations and safety features.

❖ Human factors testing should be complete prior to final pivotal studies.
Additional Considerations

• **Biocompatibility**
 - ISO 10993-1: Biological Evaluation of Medical Devices
 - Level of testing relates to duration and level of patient contact.
 - Example: Mouthpiece is a surface device, skin-contacting.
 - Cytotoxicity, sensitization, irritation tests required for material.

• **Electrical & Mechanical Safety**
 - IEC 60601-1: Medical Electrical Equipment – Part 1: General Requirements for Safety
 - IEC 60601-1-2: Medical Electrical Equipment – Electromagnetic Compatibility: Requirements and Tests

• **Software**
 - Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices
Key Points

• Drug-specific devices are regulated by CDER via the IND/NDA pathway.

• The particle specifications of the drug should be validated and characterized by cascade impaction tests.

• Final release version of the device should be used in the pivotal study.
Closing Remarks

• The evaluation of nebulization systems is a multifaceted process.
 – Incorporates regulations, standards, risk analysis.
• FDA strives to work cooperatively with manufacturers to ensure safety and efficacy of new devices.
• Guidelines and regulatory practice adapt as necessary to best serve the rapidly-evolving respiratory drug delivery field.
References

- Guidance for Industry and FDA Staff: Format for Traditional and Abbreviated 510(k)s
 http://www.fda.gov/cdrh/ode/guidance/1567.html
- Guidance for Industry and FDA Staff: How to Write a Request for Designation (RFD)
 http://www.fda.gov/oc/combination/howtowrite.html
- Final Rule: Definition of the Primary Mode of Action of a Combination Product
 http://www.fda.gov/OHRMS/DOCKETS/98fr/05-16527.htm
- Code of Federal Regulations (21 CFR 868.5630)
- Reviewer Guidance For Nebulizers, Metered Dose Inhalers, Spacers and Actuators
 http://www.fda.gov/cdrh/ode/784.html
- FDA General Program Memorandum #G95-1: Required Biocompatibility Training and
 Toxicology Profiles for Evaluation of Medical Devices
 http://www.fda.gov/cdrh/ode/g951.html
- Guidance for the Content of Premarket Submissions for Software Contained in Medical
 Devices
Questions?