Rare Disease Biorepositories and Registries: The Need for Collaborative and Novel Approaches

Benjamin M. Greenberg, MD, MHS

*We will discuss different types of data that need tracking (patient derived data, clinician derived data, laboratory derived data, radiology derived data)

*Longitudinal clinical data is critical for adding value to specimens that are gathered

*Making clinical visits research visits – the need for a change in culture and technology

*Data and specimen acquisition before diagnosis

*Collaboration between rare disease communities and common disease categories (using neuroimmunology as a model)

*Moving away from the investigator/university driven model of repositories. Using Transverse Myelitis and Neuromyelitis as a model.
Uniting Rare Diseases

Advancing Rare Disease Research:
The Intersection of Patient Registries, Biospecimen Repositories and Clinical Data

Session II
Biospecimens/Biorepositories

Benjamin Greenberg, MD, MHS
Director, Transverse Myelitis and Neuromyelitis Optica Program
University of Texas Southwestern Medical Center
Department of Neurology

Rare Disease Biorepositories and registries: The Need for Collaborative and Novel Approaches
The Alchemy of Biorepositories: Turning Samples into Gold

• A sample’s value is based on several factors
 – When was the sample obtained
 – How was the sample obtained
 – How was the sample processed
 – How was the sample stored
 – What prospective data is subsequently gathered about the patient.
Example Patient

- Patient is Born
- Patient has exposures
- Patient has various illnesses
- Patient has first symptom
- Patient is Diagnosed
- Patient is Treated
- Patient has Outcome
The Ideal Biorepository

- Patient is Born
- Patient has exposures
- Patient has various illnesses
- Patient has first symptom
- Patient is Diagnosed
- Patient is Treated
- Patient has Outcome
Reality

Patient is Diagnosed

Patient is Treated

Patient has Outcome
The Ideal Biorepository

- Patient is Born
- Patient has exposures
- Patient has various illnesses
- Patient has first symptom
- Patient is Diagnosed
- Patient is Treated
- Patient has Outcome
The Donald Rumsfield Analysis of Biorepositories for Rare Diseases
“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns, there are things we know we know. We also know there are known unknowns, that is to say, we know there are some things we do not know. But there are also unknown unknowns – the ones we don’t know we don’t know.”

-Donald Rumsfeld, Frmr. Secretary of Defense
February 12, 2002
Translation: We Don’t Know The Questions That Are Going to Be Asked Tomorrow

Everything can’t be designed around hypothesis driven research
Remodeling Repositories

• Historically, repositories have been created for genetics research
 – Simple sample acquisition and storage
 – Easy hypothesis testing
• BUT, Most diseases are the result of the following formula:

\[\text{Disease} = \text{Genetics} + \text{Environment} + \text{Timing} \]
Examples of Discoveries Since 2000

• siRNA
• miRNA
• Granulobacter bethesdensis in patients with CGD
• Metapneumovirus in children with hospitalizations for respiratory infections.
• Th17 immune cells
 – 3 articles in 2003
 – Over 700 in 2009
The Broken Repository Model

• The silo approach has failed
 – Every institution has their own program.
 – Individual studies on small numbers

• Hypothesis driven research is the only way to get funding

• Academia is not inherently collaborative

• Intellectual Property issues create obstacles.

• Charts are awful places to get data
Designing Repositories in an Ever Changing World
The Accelerated Cure Project Model for Overcoming These Issues

Two Requirements for Solving This Complex Medical Mystery

1. MS is a complex (multifactorial) disease — therefore we need to aggregate data across causes.
 - **Aggregated Data**
 - Genetics
 - Pathogens
 - Nutrition
 - Toxic Agents
 - Trauma

2. MS may even be a group of diseases — therefore we need to collect and analyze information on large numbers of subjects.

The Accelerated Cure Project MS Repository Addresses Both Requirements

Scientists working in different areas can pool their results to find important patterns and correlations if they study the same population.

Results and data are maintained on sufficient numbers of subjects to permit finding meaningful similarities.

Operation of the Accelerated Cure Project MS Repository

- **Affected and control subjects** → **Samples and information** → **MS Repository**
- **Research results** → **Scientists Investigating causes of MS**
- **Samples and information** → **Scientists and Accelerated Cure Project mining data across studies** → **New results not possible through individual studies**
This Model Is Impractical For Stand Alone Rare Disease Repositories

- Too few numbers
- Too few points of entry into study
- Too little infrastructure for longitudinal expenses.

- Solution: Combining repositories with registries and partnering up with common conditions
The Challenges for Transverse Myelitis and Neuromyelitis Optica Programs

• Rare (less funding, fewer patients, very difficult to get pre-treatment samples)

• Public perception eclipsed by multiple sclerosis
 – Patient advocacy groups appropriately want to maintain distinct identity due to distinct needs.

• Difficult semantics/misdiagnosis
Finding Common Ground

• Much can be learned by studying outliers.
 – Comparing related, albeit distinct diseases allows for new discovery
 – Neuromyelitis Optica versus Multiple Sclerosis versus Myasthenia Gravis

• The notion of “controls”
 – Allows for collaborations between “common” and “rare” disease groups.
Connecting Registries to Repositories

- Patient Referral
- Education of patients, families and physicians
- Longitudinal follow up structure
Collaborative Solutions
Status

• 9 enrolling sites
• Over 1400 cases
 – 880 MS
 – 80 NMO
 – 125 TM
• Over 400 controls

*Overrepresentation of the rare diseases!!!!
Conclusions

• Link to registries
• Link to common diseases
• Remove structure from universities
• Data sharing plan
• Broad sample procurement

• Public policy: rare disease community coming together

 every visit is a research visit
The Ideal Biorepository

1. Patient is Born
2. Patient has exposures
3. Patient has various illnesses
4. Patient has first symptom
5. Patient is Diagnosed
6. Patient is Treated
7. Patient has Outcome