MR Imaging Assessment of Inborn Errors of Metabolism

James Provenzale, M.D.
Department of Radiology, Duke University Medical Center

Departments of Radiology, Oncology and Biomedical Engineering, Emory University School of Medicine
Potential Uses of MR Imaging

- Establish diagnosis
- Assess brain structural changes
- Explain clinical findings
- Measure disease progression
- Evaluate effects of therapy
Types of MR Imaging

- Conventional clinical imaging
- Functional, e.g., brain activation studies
- Hemodynamic, e.g., perfusion imaging
- Metabolic, e.g., MR spectroscopy
- Microstructural, e.g. diffusion imaging
Target Disease and Technique

- Krabbe disease as a paradigm
- Brief review of MR spectroscopy
- Diffusion tensor imaging
MR Spectroscopy

- Depicts concentrations of various metabolites as peaks on a spectrum
- Diagnosis of inborn metabolic errors
- Many spectra are non-specific
- Means for assessing disease progression when diagnosis is known
Normal MR Spectrum
MR Spectroscopy: Krabbe

Decreased axons

Cell Turnover (demyelination)

Marker of (reactive) astrocytes

P Brockmann et al. Neurology 2003; 60:819-825
Diffusion Imaging
Diffusion Tensor MR Imaging

- Microscopic water motion within brain tends to occur predominantly along the long axis of white matter tracts
- Diffusion tensor imaging depicts that tendency
Anisotropy

- Compact white matter tracts have a very strong tendency for diffusion of water along the long axis of tracts

- That tendency is termed anisotropy

- Expressed by a metric termed fractional anisotropy (FA)
Diffusion Tensor Imaging

- FA values reflect integrity of (1) myelin sheaths and (2) axons
- FA values decrease following demyelination and/or axonal loss
Anisotropy

Lim KO, et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. *Arch Gen Psychiatry* 1999; 56:367-374.
Diffusion Tensor

Anisotropic diffusion

Eigenvalues

Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PCM. Diffusion tensor MR imaging of the brain and white matter tractography.

AJR 2002; 178; 3-16
Diffusion Tensor Imaging

- Less compact white matter tracts have a less strong tendency for water motion to be directed along the long axis of tracts.

- Tensor diffusion imaging provides a method for measuring integrity of white matter tracts.
Age-related FA Increases

Corpus Callosum (Splenium) First year of life
Age-related FA Increases

DTI - Mean FA of Normals (all ages)

GCCA – Genu of corpus callosum; SCCA – Splenium of CC

INA – Internal capsule; OR_A – Optic Radiations; FWMA – Frontal White Matter tracts
White Matter Tractography
DTI in Leukodystrophies

• In leukodystrophies, white matter is predominantly affected

• Hypothesis: DTI is a more sensitive measure of white matter involvement than conventional MR imaging in leukodystrophies
Krabbe Disease

- Diffusion tensor imaging appears to be:
 - Sensitive for WM changes
 - Likely more sensitive than T2-weighted images early in disease course
 - Findings may correlate with treatment effect
Potential Uses of MR Imaging

• Establish diagnosis

• Assess brain structural changes

• Explain clinical findings

• Measure disease progression

• Evaluate effects of therapy
Patients

- Nine infants with Krabbe's disease underwent a total of 16 MR studies during the first year of life
- Tests of mental development, gross motor skills, and fine motor skills (score range: 0-100) within 1 month of imaging

Patients

- One infant had 4 scans, 3 infants had 2 scans and 6 infants had 1 scan
- 3 weeks (n=2), 5 weeks (n=2), 5 months (n=1), 6 months (n=2), 7 months (n=1), and 9 months (n=1)
- No normal controls
MR Scans

- Scored using the Loes scale based on signal abnormality and atrophy; 0 to 32
- 2 neuroradiologists, by consensus
- Goal was not to assess therapeutic benefit of transplantation
- Compare clinical evaluations with MR findings as reflected by Loes scores
Loes Scoring System

- Developed for adrenoleukodystrophy
- Divides the entire brain into 9 regions
- 9 regions are divided into 23 sub-regions
- Each sub-region is given a score of 0, 1 or 0.5 based on signal intensity
- Signal score can range from 0 to 23
Loes Scoring System

• Assesses atrophy in 4 brain regions and 2 sub-regions (score of 0-1)

• Whole-brain atrophy rating (score of 0-3)

• Score for entire MR scan can range from 0 (best) to 32 (worst)
Neurobehavioral Tests

- Mental development test
- Gross motor skills test
- Fine motor skills test
Neurobehavioral Tests

- Mental development - Capute scale
- Gross motor skills - Mullen and/or Peabody Developmental Motor Scales
- Fine motor skills - Mullen scale
- Scores expressed as age-equivalents
Comparison 1

Total brain score (0-32)

- Mental development age equivalent
- Gross motor skills age equivalent
- Fine motor skills age equivalent
Comparison 2

Gross motor skills age equivalent

Pyramidal system (0-3)

Fine motor skills age equivalent
Comparison 3

Note the very narrow range of possible scores (0-1)

- Gross motor skills age equivalent
- Fine motor skills age equivalent
Statistical Tests

• Mixed models to adjust for multiple observations per infant

• Calculated standardized coefficients, which are equivalent to correlations; $p < .05$
MR Imaging Scores

- Mean score for entire brain: 7.79 ± 6.20 (range: 0-22.5)

- Mean score for pyramidal system: 1.18 ± 1.10 (range: 0-3.00)

- Mean score for internal capsule: 0.47 ± 0.48 (range: 0-1.00)
Developmental Scores

<table>
<thead>
<tr>
<th>Test</th>
<th>Mean (±) SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental Development Quotient</td>
<td>65 ±31 (9-100)</td>
</tr>
<tr>
<td>Gross Motor Age Equivalent Quotient</td>
<td>48±39 (6-105)</td>
</tr>
<tr>
<td>Fine Motor Age Equivalent Quotient</td>
<td>57 ±35 (12-105)</td>
</tr>
</tbody>
</table>
Comparison 1

Mental development index
-0.78 (p=0.003)

Gross motor age equivalent
-0.74 (p=0.003)

Fine motor age equivalent
-0.80 (p<0.001)
Comparison 2

Pyramidal system

Gross motor skills test
-0.58 (p=0.028)

Fine motor skills test
-0.73 (p=0.003)
Comparison 3

Internal capsule

- Gross motor skills test
 -0.35 (p=0.24)

- Fine motor skills test
 -0.38 (p=0.22)
Limitations

• No normal controls
• We did not test scoring reproducibility
• We did not test the Loes scoring system against another MR scoring system
• We don’t know how to account for clinical-imaging discrepancies
Tractography Analysis

Potential Uses of MR Imaging

• Establish diagnosis
• Assess brain structural changes
• Explain clinical findings
• Measure disease progression
• Evaluate effects of therapy
Control subject:
Frontal WM .300
Occipital WM .363

Untreated Krabbe patient:
Frontal WM .182
Occipital WM .170

Assessing Therapy

• Measuring effects of stem cell transplantation for treatment of Krabbe disease

• Age of transplantation appears to be significant for prognosis
Serial Imaging of Infant Transplanted at 3 weeks of Age

18 months post-TX

29 months post-TX
Krabbe: Early vs Late Treatment

Frontal WM: normalized FA values

Potential Uses of MR Imaging

- Establish diagnosis
- Assess brain structural changes
- Explain clinical findings
- Measure disease progression
- Evaluate effects of therapy
Treated vs Untreated Krabbe Patients

Tractography Analysis

Unknowns

- Can we predict development of clinical symptoms?
- Can we determine which regions of the CNS are most affected?
- Can we measure treatment response?
Summary

• MR imaging provides a number of methods for identifying regions of brain affected by inborn errors

• MR imaging clearly is a potential means for tracking therapy

• Some challenges: identifying asymptomatic patients who may ultimately be candidates for therapy
Diffusion Tensor

Eigenvalues

- λ_1 Axial diffusivity
- Axonal damage
- $\lambda_{2,3}$ Radial diffusivity
- Myelin damage

Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PCM. Diffusion tensor MR imaging of the brain and white matter tractography.

AJR 2002; 178; 3-16
Summary

• CNS disease will be measured using conventional MR images
• Diffusion tensor imaging will provide an additional, exploratory means to evaluate white matter injury